# **Matemática**



# 3° año secundario



Aprendemos a trabajar con Excel y las funciones polinómicas

Los pasos para graficar con Excel los detallamos a continuación.

## Te indicaremos con:

Negrita las teclas que deberás cliquear.



5 cuando tenés que dar "Enter".

# **Función Lineal:**

#### Graficaremos la función y=-3x+1

- 1. En la celda A1 tipeá K= 5
  - En la celda A2 tipeá D= 5
  - 5 En la celda **A3** tipeá **n=**
  - 5 En la celda A4 tipeá x
- 2. En la celda B1 voy al "cuadro de nombres" (arriba a la izquierda). Allí reemplazá
- B1 por  $\kappa$  5 v escribí =-3 5

En la celda **B2**, idem, y reemplazá B2 por **D** 5 y escribí =1 5

En la celda **B3**, idem, y reemplazá por **n 5** y escribí =1 **5** 

En la celda B4 escribí y 5

En la celda A5 escribí –85 y en la B5, escribí =, cliqueá en B1 y luego escribí, sin dejar espacios:

\*POTENCIA(A5;n)+ luego cliqueá en B2 y escribí \*POTENCIA(A5;n-1) 5

Atención: luego de A5 (en ambos casos) es ; y en la celda verás aparecer el número 25 que es el resultado que se obtiene al reemplazar x por -8 en el polinomio -3x+1

**3.** Sombreá las celdas **A5** y **B5**, posicionate en el extremo inferior derecho de la B5 y arrastrá hasta las celdas **A17 : B17**. Aparecerá la tabla de valores.

4. Sombreá la tabla desde A4 : B4 hasta A17 : B17. Insertá un gráfico.

En tipo de gráfico elegí: xy (Dispersión).

En subtipo de gráfico seleccioná el de dos curvas sin puntos.

Cliqueá en siguiente y en:

Título del Gráfico: Función Lineal y=-3x+1

Eje de valores (x) Eje de valores (y)

Líneas de división: tildá solo las principales.

Leyenda: sacá la tilde de mostrar leyenda.

Rótulo de datos: Ininguno

Luego siguiente y por último finalizar.

En pantalla verás:

## EJEMPLO:



Ahora probemos con la función polinómica de segundo grado, por ejemplo  $y=2x^2-8x-10$ 

#### Función cuadrática:

En la celda A1 tipeá K= 5
En la celda A2 tipeá D= 5
En la celda A3 tipeá n= 5
En la celda A4 tipeá x 5

2. En la celda B1 voy al "cuadro de nombres" (arriba a la izquierda). Allí reemplazá

B1 por 
$$\kappa$$
 5 y escribí = 2 5

En la celda **B2**, idem, y reemplazá B2 por **D** 5 y escribí =-85

En la celda B3, idem, y reemplazá por E5 y escribí =-105

En la celda **B4**, idem, y reemplazá por n5 y escribí = 25

En la celda A5 escribí x 5

En la celda B5 escribí y 5

En la celda A6 escribí -105 y en la B6, primero cliqueá en B1 y luego escribí, sin dejas espacios:

\*POTENCIA(A6;n)+ luego cliqueá en B2 y escribí \*POTENCIA(A6;n-1)+ luego

cliqueá en B3 y escribí \*POTENCIA(A6;n-2) 5

Atención: luego de A6 (en ambos casos) es

y en la celda verás aparecer el número **270** que es el resultado que se obtiene al reemplazar **x por –10** en el polinomio  $2x^2 - 8x-10$ 

**3.** Sombreá las celdas **A5** y **B5**, posicionate en el extremo inferior derecho de la B5 y arrastrá hasta las celdas **A30 : B30**. Aparecerá la tabla de valores.

Sombreá la tabla desde A4 : B4 hasta A30 : B30.

Insertá un gráfico.

En tipo de gráfico elegí: xy (Dispersión).

En subtipo de gráfico seleccioná el de dos curvas sin puntos.

Cliqueá en siguiente y en:

Título del Gráfico: Función Cuadrática

Eje de valores (x) Eje de valores (y)

Líneas de división: tildá solo las principales.

Levenda: sacá la tilde de mostrar levenda.

Rótulo de datos: Ininguno

Luego siguiente y por último finalizar.

#### EJEMPLO:



#### Función polinómica de grado "n".

Se siguen los mismos pasos del procedimiento usado para las funciones lineal y cuadrática. En esta ocasión, la función polinómica tiene la expresión siguiente:

$$y=A.x^{n}+B.x^{n-1}+D.x^{n-2}+E.x^{n-3}+G$$

donde A, B,D, E y G son coeficientes y **n** es el grado de la función. Para el ejemplo usaremos **n=4** (polinomio de grado 4), y los coeficientes serán A=2, B=0, D=-20, E=-10, G=-4. Así, la función polinómica particular a estudiar es:

$$y = 2x^4 - 20x^2 - 10x - 4$$

1. En las celdas A1 hasta A6 introducir, respectivamente, A=, B=, D=, E=, G=, n=.

2. En las celdas B1 hasta B6, usar el *cuadro de nombres* (como en el paso 2 de los ejemplos lineal y cuadrática) para asignar los nombres A, B, D, E, G y n a dichas celdas.

3. Digitar =2 en la celda B1, =0 en B2, =-20 en B3, =-10 en B4, =-4 en B5, =4 en B6.

4. En A7 digitar x. En B7 digitar y.

**5.** El estudio de esta función se realizará en el intervalo de valores de **x** comprendidos entre -8 y 4, con incrementos de 0.10 unidades. En A8 digitar **-8**. En A9 digitar **=A8+0.10**.

6. En B8 digitar =A\*POTENCIA(A8,n)+B\*POTENCIA(A8,n-1)+D\*POTENCIA(A8,n-2)+E\*POTENCIA(A8,n-3)+G\*POTENCIA(A8,n-4). De esta forma se indica a Excel cómo debe calcular el valor de y a partir de los coeficientes y del grado del polinomio, para el primer valor de x en el intervalo deseado.

La expresión POTENCIA(A8,n) indica que el valor de  $\mathbf{x}$  ubicado en la celda A8 se debe elevar al exponente  $\mathbf{n}$ , y así sucesivamente.

7. Estirar la celda con el valor de "y" recién calculado en B8 para obtener el de B9.

**8.** Seleccionar las celdas A9 y B9 y arrastrar el conjunto hacia abajo hasta la fila 25, para que Excel calcule automáticamente toda la tabla en el intervalo definido.

**9.** Seleccionar toda la tabla, en el rango (A7:B7), y usar el asistente de gráficos tal como se hizo para la función lineal, para construir la gráfica de esta función polinómica.

**No te olvides** de agregar una línea de tendencia, esta vez de tipo <u>polinomial</u>, y solicitar la presentación de la ecuación.

Los detalles de formato de la tabla y del gráfico se dejan al usuario.

Ahora pueden modificarse los valores del grado **n** del polinomio o algunos de los coeficientes, para observar el comportamiento de la gráfica.

