

Kit de programación Código Pi

Sense Hat Comandos básicos

Autoridades

Presidente de la Nación Mauricio Macri

Jefe de Gabinete de Ministros Marcos Peña

Ministro de Educación, Cultura, Ciencia y Tecnología Alejandro Finocchiaro

Secretario de Gobierno de Cultura Pablo Avelluto

Secretario de Gobierno de Ciencia, Tecnología e Innovación Productiva Lino Barañao

Titular de la Unidad de Coordinación General del Ministerio de Educación, Cultura, Ciencia y Tecnología Manuel Vidal

Secretaria de Innovación y Calidad Educativa Mercedes Miguel

Subsecretario de Coordinación Administrativa Javier Mezzamico

Directora Nacional de Innovación Educativa María Florencia Ripani

ISBN en trámite

Este material fue producido por el Ministerio de Educación, Cultura, Ciencia y Tecnología en base a contenidos provistos sin cargo por la Fundación Raspberry Pi mediante licencias Creative Commons y han sido desarrollados en función de los Núcleos de Aprendizajes Prioritarios de educación digital, programación y robótica y los recursos tecnológicos propuestos en el marco del Plan Aprender Conectados.

Índice

Destellos aleatorios en Sense HAT	5
Configurar píxeles	7
Agregar un bucle	11
¿Qué sigue?	13

Sense HAT – Comandos básicos

Hoja de referencia para Python

Para incorporar funcionalidad **Sense HAT** a nuestros programas Python, agregamos las siguientes líneas para importar la biblioteca, a la biblioteca Sense HAT:

```
from sense_hat import SenseHat sense = SenseHat()
```

De ahí en más, podremos usar cualquiera de las funciones definidas de la biblioteca Sense HAT.

LED Matrix	<pre>sense.set_pixel(0, 0, 255, 0, 0)</pre>	Configura el led del extremo superior izquierdo con el color rojo.
	<pre>sense.show_letter("J", 0, 0, 255)</pre>	Muestra la letra "J" en color azul en la pantalla.
	<pre>sense.show_message("msg", text_colour=[0, 255, 0])</pre>	Muestra el mensaje "msg" en verde en la matriz.
	<pre>sense.load_image("creeper.png", redraw=True)</pre>	Carga una imagen 8x8 "creeper.png" y la muestra.
	<pre>sense.clear()</pre>	Elimina el led y apaga todos los led.
	<pre>sense.set_rotation(r=0)</pre>	Configura la rotación de la matriz led.
	<pre>sense.set_pixels(pixelList)</pre>	Usa una lista de píxeles para hacer un dibujo, cada elemento es una lista [R, G, B].
Movement	<pre>yaw,pitch,roll = sense.get_orientation().va- lues()</pre>	Obtiene los datos de orientación y guarda los valores como eje vertical, eje lateral, eje longitudinal.
	<pre>m_x, m_y, m_z = sense.get_compass_raw().va- lues()</pre>	Obtiene los datos de la brújula y los guarda como m_x, m_y, m_z .
	<pre>x, y, z = sense.get_accelerometer_raw().va- lues()</pre>	Obtiene los datos del acelerómetro y los guarda como x ,y, z.
	<pre>g_x,g_y,g_z = sense.get_gyroscope_raw().va- lues()</pre>	Obtiene los datos de orientación y los guarda como g_x, g_y, g_z .

Temperature Market Press Humidity		t =	<pre>sense.get_temperature_from_humidity()</pre>	Usa el sensor de humedad para obtener la temperatura y la guarda como t .
	Pressure	t =	<pre>sense.get_temperature_from_pressure()</pre>	Usa el sensor de presión para obtener la temperatura y la guarda como t .
		h =	<pre>sense.get_humidity()</pre>	Mide la humedad y la guarda como h .
		p =	<pre>sense.get_pressure()</pre>	Mide la presión y la guarda como p .

	Hay varias maneras de capturar la entrada desde el <i>joystick</i> . Podrííamos usar la biblioteca Pygame o la biblioteca Curses . Sin embargo para este ejemplo vamos a usar el sistema evdev, que tendremos que instalar usando "sudo pip3 install evdev".			
	from evdev import InputDevice, ecodes,list_sdevice from select import sælec			
•	devices = [InputDevice(fn) for fn in list_de∳ices() for dev in devixce if dev.name == "Raspberry Pi Sense HAT Joystick js = de	El código de la izquierda busca los dispositivos de entrada disponibles y encuentra el <i>joystick</i> Sense HAT.		
Joystick	<pre>while Trume r, w, x = select([dev.fd], [], [1]),0.0 for fd im: for event in dev.r@ad(</pre>	Luego verifica constantemente el dispositivo <i>joystick</i> y crea una llamada de lista de eventos r .		
	<pre>if event.type= ecodes.EV_KEY:#nd event.value= 1:</pre>	Para cada evento en la lista, verifica si fue un evento de teclado.		
	print("right" elif event.code == ecodes.KEMY_DOW print("ďown else print("enter"	Luego compara el código de la tecla con los valores para arriba, abajo, izquierda y derecha e imprime el mensaje co- rrespondiente.		

Desplazamiento de mensaje

from sense_hat import SenseHat

sense = SenseHat()

while True:

sense.show_message("Spaaaaaaace!!", scroll_speed=0.05, text_colour=[255,255,0], back_colour=[0,0,255]

Sensores ambientales	Rotación de la letra "J"
from sense_hat import SenseHat	<pre>from sense_hat import SenseHat import time sense = SenseHat()</pre>
<pre>sense = SenseHat()</pre>	<pre>sense.show_letter("J")</pre>
while True:	while True:
<pre>t = sense.get_temperature() p = sense.get_pressure() h = sense.get_humidity()</pre>	<pre>x, y, z = sense.get_accelerometer_raw().values() x = round(x, 0)</pre>
<pre>t = round(t,1) p = round(p,1) h = round(h,1)</pre>	<pre>y = round(y, 0) if x == -1: sense.set_rotation(180)</pre>
<pre>msg = "Temp = %s, Pressure=%s, Humidity=%s" % (t,p,h)</pre>	<pre>elif y == -1: sense.set_rotation(90) elif y == 1: sense.set rotation(270)</pre>
<pre>sense.snow_message(msg,scroll_speed=0.05)</pre>	else: sense.set_rotation(0) time.sleep(0.1)

Juego de velocidad de reacción from sense hat import SenseHat import time import random sense = SenseHat() # set up the colours (white, green, red, empty) w = [150, 150, 150]q = [0,255,0] r = [255,0,0] e = [0,0,0]# create three different coloured arrows arrow = [e,e,e,w,w,e,e,e,e, e,e,w,w,w,w,e,e, e,w,e,w,w,e,w,e, w,e,e,w,w,e,e,w, e,e,e,w,w,e,e,e, e,e,e,w,w,e,e,e, e,e,e,w,w,e,e,e, e,e,e,w,w,e,e,e] arrow_red = [e,e,e,r,r,e,e,e, e,e,r,r,r,r,e,e, e,e,e,r,r,e,e,e, e,e,e,r,r,e,e,e, e,e,e,r,r,e,e,e] arrow_green = [e,e,e,g,g,e,e,e, e,e,g,g,g,g,e,e, e,g,e,g,g,e,g,e, g,e,e,g,g,e,e,g, e,e,e,g,g,e,e,e, e,e,e,g,g,e,e,e, e,e,e,g,g,e,e,e, e,e,e,g,g,e,e,e]

pause = 3score = 0angle = 0play = True sense.show message("Keep the arrow pointing up", text colour=[100,100,100]) while play == True: last angle = angle while angle == last angle: angle = random.choice([0, 90, 180, 270]) sense.set rotation(angle) sense.set pixels(arrow) time.sleep(pause) x, y, z = sense.get accelerometer raw().values() x = round(x, 0)y = round(y, 0)if x == -1 and angle == 180: sense.set pixels(arrow green) score = score + 1elif x == 1 and angle == 0: sense.set pixels(arrow green) score = score + 1elif y == -1 and angle == 90: sense.set_pixels(arrow_green) score = score + 1elif y == 1 and angle == 270: sense.set pixels(arrow green) score = score + 1else: sense.set pixels(arrow red) play = False pause = pause * 0.95 time.sleep(0.5) msg = "Your score was %s" % (score) sense.show message(msg, scroll speed=0.05, text colour=[100,100,100])

